
Stripecon EU 2023

Contributing to
Silverstripe CMS

a (relatively) comprehensive guide

Who’s this person?

Guy Sartorelli

● Senior Product Developer at Silverstripe

● Silverstripe Core Committer

● Contributed several bug fixes and feature
enhancements to Silverstripe CMS prior to being
employed at Silverstripe

Managing
contributions

How you can
contribute

Managing
contributions

Gaining and maintaining momentum for
merging community pull requests

● We merge community-created pull requests on an ad-hoc basis
● There’s a sentiment that pull requests don’t get looked at, so it’s not

worth raising them
● CMS Squad (4 people) and Core Committers (additional 9 people) are

the only people with merge powers
● Not many of the Core Committers actively review/merge pull

requests recently
● There’s no clear path for giving those powers to more people

Current state of contribution management

“Definitely one of the things that has
kept me moving on the PRs is the
feedback ... momentum is really

important in getting things
committed.”

Andrew Paxley

● Proposal for new community contributor roles
● “Refiner” - make sure issues and PRs have enough information
● “Reviewer” - review and merge pull requests

● Proposal for how we deal with stale issues/PRs
● Templates for Github issues/PRs
● ??? What else? Recommendations are welcome

Send suggestions through to community@silverstripe.org, create a forum
post, or message me on slack

We’re looking to do better
under review

pre-draft
in backlog

mailto:community@silverstripe.com

How you can
contribute

How to contribute to the open source
Silverstripe CMS ecosystem

So… how can
you contribute?

And yes, I will be taking
you through how to do
most of these

● Update documentation
● Provide translations/localisations
● Report bugs
● Fix bugs
● Implement/improve features
● Provide new modules
● Maintain a non-supported module

● Add new documentation
● for currently-undocumented features
● for poorly documented features

● Fix incorrect or misleading docs
● Fix typos, syntax errors, etc

Out of scope for now:
● The lessons
● Information Architecture (i.e. rearranging

the docs)

Update documentation

Let’s see how to update docs

Update documentation - directly on GitHub

Click “Edit on GitHub” at the bottom
of the documentation page

1

You may need to fork the repository2

Take note of what branch you’re editing3

Click “Commit changes”4

Write an appropriate commit
message, prefixed with “DOCS”
and click “Propose changes”

5

Set the correct branch and
click “Create pull request”

6

Double check commit message and click “Create pull request”7

What if the change spans multiple pages?

Update documentation - with github.dev

When viewing a file, click the arrow
next to the edit button, then click
“github.dev”

1

After creating your fork…

Click the source control button, add your
commit message, and “Commit & Push”

3

Make your changes2

Click the GitHub button, then click
create new pull request

4

Make sure to target
the correct branch

5

Update the PR
name and
description

6

Click “Create”7

Provide translations/localisations

Silverstripe CMS is used by
thousands of content
authors and digital agencies
around the world.

https://explore.transifex.com/silverstripe/ to see the status of translations
https://app.transifex.com/silverstripe/ to contribute translations

There are almost 150 contributors who have
provided translations for up to 89 languages for
core and supported modules - but the work is far
from complete

https://explore.transifex.com/silverstripe/
https://app.transifex.com/silverstripe/

● Rule out customisations first
● Look for existing issues
● Include as much information as you can
● Include steps to reproduce from a fresh

installation
● Be really specific. Don’t just say

“create a page” - take us through the
process step-by-step

● List the module version you found the
bug on

● Refer to the docs for more info

Report bugs

https://docs.silverstripe.org/en/5/contributing/issues_and_bugs/

● Especially for bugs you have reported
● Target the correct branch

● CMS 4.13 or latest minor release
● Follow the contributing code docs

● There’s a handy checklist there!
● Prefix your commit message with “FIX”
● Link to the issue your PR is fixing

● If there isn’t one, create one first
● Link back to your PR from the issue,

too
● Include tests, if you can

Fix bugs

https://docs.silverstripe.org/en/5/contributing/code/

Some of the following slides reference
“DDEV”

https://ddev.readthedocs.io/en/stable/users/
quickstart/#silverstripe

https://ddev.readthedocs.io/en/stable/users/quickstart/#silverstripe
https://ddev.readthedocs.io/en/stable/users/quickstart/#silverstripe

Building js/css

if you’re using DDEV, prefix these commands with:
ddev exec -d /var/www/html/vendor/silverstripe/<module>
otherwise make sure to install nvm!

cd vendor/silverstripe/<module> # skip this if using DDEV
make sure you’re using the correct version of npm
nvm install
nvm use
npm install -g yarn
install dependencies
yarn install
Run yarn install in silverstripe/admin as well!!

continuously rebuild while you’re developing
yarn watch
one-time (not minified) build while you’re developing
yarn dev
always use “yarn build” before committing your changes
yarn build

there are other scripts too - check package.json

Writing tests
Just copy our homework.

JEST tests for javascript BEHAT behavioural tests PHP unit/functional tests

Running tests

this recipe includes phpcs, phpunit, and behat

composer require --dev silverstripe/recipe-testing

● Linting PHP

● PHPUnit tests

● Behat tests

You need some dependencies

For unit and behat tests, your database user
needs to have permissions to create new
databases.

Running tests - linting PHP

MODULE_PATH="vendor/silverstripe/<module>"

make sure you’re using the config that comes with that module

need to run it for each of /src, /tests, and /_config.php

vendor/bin/phpcs "$MODULE_PATH/<code|src|tests|_config.php>"

--standard="$MODULE_PATH/phpcs.xml.dist"

DDEV is a little simpler - just run this once

ddev exec -d "/var/www/html/$MODULE_PATH" phpcs <src|code> tests

_config.php

Running tests - PHPUnit

MODULE_PATH="vendor/silverstripe/<module>"

running phpunit tests natively

vendor/bin/phpunit "$MODULE_PATH/<path/to/test>.php"

running phpunit tests with DDEV

ddev exec -d "/var/www/html/$MODULE_PATH" phpunit <path/to/test>.php

path/to/test might be e.g. "tests/php/ORM/DataListTest"

Your database user needs to have permissions
to create new databases.
If you’re using DDEV, set your SS_DATABASE_USERNAME and
SS_DATABASE_PASSWORD to “root”

Running tests - Behat
Your database user needs to have permissions
to create new databases.
If you’re using DDEV, set your SS_DATABASE_USERNAME and
SS_DATABASE_PASSWORD to “root”

You also need to either install and run
chromedriver (or similar) and configure it and
your behat/yml correctly, or…

Running tests - Behat
There’s some extra setup for behat with DDEV
get the selenium2 php library

ddev composer require --dev behat/mink-selenium2-driver

get the required docker setup into your DDEV project

ddev get ddev/ddev-selenium-standalone-chrome

restart your local environment

ddev restart

Running tests - Behat
Update your behat.yml config (see DDEV docs)
default:
 suites: []
 extensions:
+ Behat\MinkExtension:
+ base_url: http://web
+ selenium2:
+ wd_host: http://selenium-chrome:4444/wd/hub
+ capabilities:
+ chrome:
+ switches:
+ - "--disable-gpu"
+ - "--headless"
+ - "--no-sandbox"
+ - "--disable-dev-shm-usage"
- SilverStripe\BehatExtension\MinkExtension:
- default_session: facebook_web_driver
- javascript_session: facebook_web_driver
- facebook_web_driver:
- browser: chrome
- wd_host: "http://127.0.0.1:9515" #chromedriver port
- browser_name: chrome
 SilverStripe\BehatExtension\Extension:

https://github.com/ddev/ddev-selenium-standalone-chrome?tab=readme-ov-file#behat-config-example

Running tests - Behat

running behat tests natively

vendor/bin/behat <module> --tags=<some-tag>

running behat tests with ddev

ddev exec behat <module> --tags=<some-tag>

example

ddev exec behat admin --tags=test-me

To test a specific feature or scenario, add a tag on
the line above the “feature” or “scenario”
keyword

@test-me

Scenario: Bad login

Make your PR successful
● Link your pull request to an issue (make

one if you have to)

● Link to your pull request from that issue

● Explain your implementation

● Include appropriate test coverage

● Respond to comments quickly (keep up
momentum)

● If you fight back against a requested
change, provide a clear reason why

● Bonus points for showing precedent
in the codebase

● Things you’re rebuilding all the time
● Barriers you’re working around a lot
● Improve partially-implemented features
● Quality of life improvements

BUT discuss non-trivial features in a GitHub
issue first - it could save you a lot of effort.

When you’re read to raise a PR, read and
follow all of the information in the
Contributing Code documentation.

Implement/improve features?

https://docs.silverstripe.org/en/5/contributing/code

Not every feature belongs in core!

Wait a minute… hasn’t someone covered this
one already?

Implement modules

For non-supported modules in the
“silverstripe” GitHub organisation, YOU can
be a maintainer!

Email community@silverstripe.org if you are
keen to help maintain a module that is not
commercially supported.

Maintain a non-supported
module

mailto:community@silverstripe.com

Contributions FAQ
But really it’s mostly about pull requests

How do I report
a security
vulnerability?

For security vulnerabilities in a core or
supported module, email
security@silverstripe.org

For anything else, contact the
maintainer(s) privately
● Check for security policies
● Contact the maintainer(s) directly if

you can
● As a last resort, create a public issue

asking for a way to contact
maintainer(s) - DO NOT publicly
disclose the vulnerability

mailto:security@silverstripe.org

I’ve got a working
development
environment - how
do I start working
on my PR?

--prefer-source is the magic sauce

reinstall the module - but this time with git history

composer reinstall <org/module> --prefer-source

check out the branch your PR will target

git checkout 5.0

create a new branch for your PR

git checkout -b <your-pr-branch-name>

when you’re ready to push, add your fork and push to it

git remote add pr <fork-url>

git push pr <your-pr-branch-name>

clean up after yourself by reinstalling the module

composer reinstall <org/module>

When do I need
to write tests?

You should add a new test if:
● You are introducing a new feature or

behaviour
● You are modifying a feature with

pre-existing test coverage
● You are fixing a bug (especially a

regression)

You should modify existing tests if:
● You have changed behaviour that was

being tested
● Existing tests are failing because they

are testing the wrong thing

When do I not
need to write
tests?

We try to be pretty lenient. We might
merge your pull request without tests if:

● You’ve given it an honest attempt
● There’s a low chance of regressions
● It’s a fairly simple code change
● Reproduction steps for the original

issue are clear

You obviously also don’t need to write
tests for documentation pull requests.

The reviewer has
asked a question
and I don’t know
the answer. What
should I say?

If you didn’t understand what they’re
asking, ask them to rephrase their
question.

If you did understand:
● Do your best to find an answer
● Explain what you have done to try to

answer the question
● Explain why you can’t answer

Someone
requested changes
but I don’t have
time to do them.
What do I do?

Be open and honest about your time
commitments.

If the requested changes were simple,
someone may take over the pull request
for you.

Sometimes your pull request will be
closed until someone has time to work on
it again.

The target branch
for my PR changed
and now it shows
lots more commits.
What do I do?

Either reset commits

Or create a new PR, committing your
changes on top of the branch your PR is
targeting.

show the last commit(s)

git log -1 # take note of the commit hash(es)

check out the branch your PR is now targetting

git checkout 5.0

git pull

delete and recreate the LOCAL copy of your PR branch

git branch -D <your-pr-branch-name>

git checkout -b <your-pr-branch-name>

cherry-pick your commit(s)

git cherry-pick <commit-hash> [more-commit-hashes]

resolve any conflicts at this stage

force push your local branch to your fork

git push <your-remote> <your-pr-branch-name> --force-with-lease

When will my
pull request be
merged?

Short answer:
Hopefully within a month, but realistically
there’s no set timeframe.

Existing PRs that have been open for a
while might stay stale for the time being.

With any luck the new community roles
will be implemented sooner rather than
later.

“The power of Open Source is the
power of the people.”

Philippe Kahn

Thank you!

